已知椭圆E:
(
)离心率为
,上顶点M,右顶点N,直线MN与圆
相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,
,求m的取值范围.
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为
,焦点在
轴上,中心在原点.若右焦点到直线
的距离为3.
(1)求椭圆的标准方程;
(2)设直线
与椭圆相交于不同的两点
.当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点与椭圆
的右焦点重合,抛物线
的顶点在坐标原点,过点
的直线
与抛物线
交于A,B两点,
(1)写出抛物线
的标准方程 (2)求⊿ABO的面积最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的左焦点为
,过点
的直线交椭圆于
,
两点.当直线
经过椭圆的一个顶点时,其倾斜角恰为
.![]()
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点,
记△
的面积为
,△
(
为原点)的面积为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
与抛物线
的焦点均在
轴上,
的中心及
的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,设点
(
),直线
:
,点
在直线
上移动,
是线段
与
轴的交点, 过
、
分别作直线
、
,使
,
.![]()
(1)求动点
的轨迹
的方程;
(2)在直线
上任取一点
做曲线
的两条切线,设切点为
、
,求证:直线
恒过一定点;
(3)对(2)求证:当直线
的斜率存在时,直线
的斜率的倒数成等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com