精英家教网 > 高中数学 > 题目详情

如图,已知直线与抛物线相切于点)且与轴交于点为坐标原点,定点B的坐标为.

(1)若动点满足|=,求点的轨迹.
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点,试求面积之比的取值范围.

(1) (2)

解析试题分析:解:(I)由
∴直线的斜率为
的方程为,∴点A坐标为(1,0)       
   则

整理,得      
∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2
的椭圆.     
(II)如图,由题意知直线的斜率存在且不为零,

方程为y=k(x-2)(k≠0)①
将①代入,整理,得

.  设
 ②  
,由此可得
由②知


.∴△OBE与△OBF面积之比的取值范围是
考点:椭圆的方程
点评:关于曲线的大题,第一问一般是求出曲线的方程,第二问常与直线结合起来,当涉及到交点时,常用到根与系数的关系式:)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,过轴上一点的直线与抛物线交于点两点。
证明,存在唯一一点,使得为常数,并确定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知,直线, 动点的距离是它到定直线距离的倍. 设动点的轨迹曲线为
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点的距离分别为,试判断是否为常数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为,焦点在轴上,中心在原点.若右焦点到直线的距离为3.    
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点.当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点,
(1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值

查看答案和解析>>

同步练习册答案