已知两定点,,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足(为原点),求四边形面积的最大值,并求此时的直线的方程.
(1) (2) 直线的方程为
解析试题分析:解(1)动点P满足,点P的轨迹是以E F为直径的圆,动点P的轨迹方程为.设M(x,y)是曲线C上任一点,因为PMx轴,,点P的坐标为(x,2y), 点P在圆上, ,
曲线C的方程是 .
(2)因为,所以四边形OANB为平行四边形,
当直线的斜率不存在时显然不符合题意;
当直线的斜率存在时,设直线的方程为y=kx-2,与椭圆交于两点,由得
,由,得,即
10分
令
,,解得,满足,
,(当且仅当时“=”成立),
当平行四边形OANB面积的最大值为2.
所求直线的方程为
考点:圆锥曲线方程的求解和运用
点评:主要是考查了运用代数的方法来通过向量的数量积的公式,以及联立方程组,结合韦达定理来求解,属于中档题。
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.
(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.
试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点、的动直线、相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线的焦点作倾斜角为的直线交抛物线于、两点,过点作抛物线的切线交轴于点,过点作切线的垂线交轴于点。
(1) 若,求此抛物线与线段以及线段所围成的封闭图形的面积。
(2) 求证:;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线和椭圆都经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点、组成一个正三角形,焦点到椭圆上的点的最短距离为.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于、两点,线段的中点为,求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com