在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
科目:高中数学 来源: 题型:解答题
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=,时,求椭圆的方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两定点,,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足(为原点),求四边形面积的最大值,并求此时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线过点,,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点、,使得?若存在,试求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)设椭圆:与双曲线:有相同的焦点,是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;
(3)由抛物线弧:()与第(1)小题椭圆弧:()所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,,且(),试用表示;并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是椭圆C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
圆C的圆心在y轴上,且与两直线l1:;l2:均相切.
(I)求圆C的方程;
(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com