已知,椭圆C以过点A(1,
),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
(1)
.(2)直线EF的斜率为定值,其值为
。
解析试题分析:(1)由题意,c=1,可设椭圆方程为
。
因为A在椭圆上,所以
,解得
=3,
=
(舍去)。
所以椭圆方程为
. 6分
(2)设直线AE方程:得
,代入
得![]()
设E(
,
),F(
,
).因为点A(1,
)在椭圆上,所以
,
。 9分
又直线AF的斜率与AE的斜率互为相反数,在上式中以
代
,可得
,
。
所以直线EF的斜率
。
即直线EF的斜率为定值,其值为
。 13分
考点:本题主要考查椭圆的标准方程及其几何性质,直线与椭圆的位置关系。
点评:中档题,本题求椭圆的标准方程,主要运用的椭圆的几何性质,注意明确焦点轴和a,b,c的关系。研究直线与圆锥曲线的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。
科目:高中数学 来源: 题型:解答题
如图,椭圆
的顶点为
,焦点为
,
. ![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,
是与n垂直相交于P点,与椭圆相交于A, B两点的直线,
.是否存在上述直线
使
成立?若存在,求出直线
的方程;并说出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点与椭圆
的右焦点重合.(Ⅰ)求抛物线
的方程;
(Ⅱ)动直线
恒过点
与抛物线
交于A、B两点,与
轴交于C点,请你观察并判断:在线段MA,MB,MC,AB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:![]()
(1)求曲线C1的普通方程
(2)曲线C2的方程为
,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点
,焦点在x轴上,离心率为
的椭圆过点(
,
).![]()
(1)求椭圆的方程;
(2)设不过原点
的直线与该椭圆交于
、
两点,满足直线
,
,
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
的焦点在抛物线
上,点
是抛物线
上的动点.![]()
(Ⅰ)求抛物线
的方程及其准线方程;
(Ⅱ)过点
作抛物线
的两条切线,
、
分别为两个切点,设点
到直线
的距离为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com