精英家教网 > 高中数学 > 题目详情

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

(1).(2)直线EF的斜率为定值,其值为

解析试题分析:(1)由题意,c=1,可设椭圆方程为
因为A在椭圆上,所以,解得=3,(舍去)。
所以椭圆方程为 .         6分
(2)设直线AE方程:得,代入

设E(),F().因为点A(1,)在椭圆上,所以

。           9分
又直线AF的斜率与AE的斜率互为相反数,在上式中以,可得


所以直线EF的斜率
即直线EF的斜率为定值,其值为。           13分
考点:本题主要考查椭圆的标准方程及其几何性质,直线与椭圆的位置关系。
点评:中档题,本题求椭圆的标准方程,主要运用的椭圆的几何性质,注意明确焦点轴和a,b,c的关系。研究直线与圆锥曲线的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的顶点为,焦点为.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合.(Ⅰ)求抛物线的方程;
(Ⅱ)动直线恒过点与抛物线交于AB两点,与轴交于C点,请你观察并判断:在线段MAMBMCAB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若双曲线的离心率等于,直线与双曲线的右支交于两点.
(1)求的取值范围;
(2)若,点是双曲线上一点,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:
(1)求曲线C1的普通方程
(2)曲线C2的方程为,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点,焦点在x轴上,离心率为的椭圆过点().

(1)求椭圆的方程;
(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线的两条切线,分别为两个切点,设点到直线的距离为,求的最小值.

查看答案和解析>>

同步练习册答案