精英家教网 > 高中数学 > 题目详情

如图,椭圆的顶点为,焦点为.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.

(Ⅰ) (Ⅱ)使成立的直线不存在.

解析试题分析:(Ⅰ)由a2+b2=7,             ①
a=2c,          ②
b2=a2-c2                                    ③
由 ①,②,③解得a2=4,b2=3,
故椭圆C的方程为
(Ⅱ) 设A,B两点的坐标分别为
假设使成立的直线l存在,

(i) 当l不垂直于x轴时,设l的方程为,
ln垂直相交于P点且,即m2=k2+1
x1x2+y1y2=0
将y=kx+m代入椭圆方程,得(3+4k2)x2+8kmx+(4m2-12)=0,
由求根公式可得x1+x2=            ④
x1+x2=         ⑤


将④,⑤代入上式并化简得       ⑥
代入⑥并化简得,矛盾.
即此时直线不存在.
(ii)当垂直于轴时,满足的直线的方程为
则A,B两点的坐标为
时,
时,
∴ 此时直线也不存在.
综上可知,使成立的直线不存在.
考点:本题考查了椭圆方程的求法及直线与椭圆的位置关系
点评:椭圆的概念和性质,仍将是今后命题的热点,定值、最值、范围问题将有所加强;利用直线、弦长、圆锥曲线三者的关系组成的各类试题是解析几何中长盛不衰的主题,其中求解与相交弦有关的综合题仍是今后命题的重点;与其它知识的交汇(如向量、不等式)命题将是今后高考命题的一个新的重点、热点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=时,求椭圆的方程;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(1)求椭圆C的方程;
(2)过点且斜率为(>0)的直线C交于两点,是点关于轴的对称点,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
求椭圆C的方程;
E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1F2是离心率为的椭圆C(ab>0)的左、右焦点,直线x=-将线段F1F2分成两段,其长度之比为1 : 3.设AB是椭圆C上的两个动点,线段AB的中垂线与C交于PQ两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

查看答案和解析>>

同步练习册答案