精英家教网 > 高中数学 > 题目详情

求倾斜角是直线y=-x+1的倾斜角的,且分别满足下列条件的直线方程:(1)经过点(,-1);(2)在y轴上的截距是-5.

(1)x-3y-6=0.  (2)x-3y-15=0

解析试题分析:解:∵直线的方程为y=-x+1,
∴k=-,倾斜角α=120°,
由题知所求直线的倾斜角为30°,即斜率为.
(1)∵直线经过点(,-1),
∴所求直线方程为y+1= (x-),
x-3y-6=0.
(2)∵直线在y轴上的截距为-5,
∴由斜截式知所求直线方程为y=x-5,
x-3y-15=0
考点:直线方程
点评:主要是根据点斜式和斜截式来求解直线方程的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆的焦点在轴上
(Ⅰ)若椭圆的焦距为1,求椭圆的方程;
(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线的方程;
(Ⅱ)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线:中,请写出结论,不用证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的平面直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点关于点对称.

(1)若点的坐标为,求的值;
(2)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案