精英家教网 > 高中数学 > 题目详情

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

(1)
(2)直线l与圆O相交.

解析试题分析:解:(1)设椭圆C的半焦距为c,则,即①          1分
   ②            3分
联立①②,解得,所以.
所以椭圆C的方程为.                     5分
而椭圆C上点与椭圆中心O的距离为
,等号在时成立   7分,
,则的最小值为,从而,则圆O的方程为.                              9分
(2)因为点在椭圆C上运动,所以.即.
圆心O到直线的距离.     12分
,则直线l与圆O相交.               14分
考点:椭圆方程和圆的方程
点评:主要是考查了椭圆的方程以及直线与圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线的左、右焦点分别为离心率为直线与C的两个交点间的距离为
(I)求
(II)设过的直线l与C的左、右两支分别相交有A、B两点,且证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.

(I)当直线过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点关于点对称.

(1)若点的坐标为,求的值;
(2)若椭圆上存在点,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,右焦点到直线 的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).

查看答案和解析>>

同步练习册答案