精英家教网 > 高中数学 > 题目详情

过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.

(I)当直线过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:为定值.

(I)    (II)=4

解析试题分析:(Ⅰ)由已知得,解得,所以椭圆方程为
椭圆的右焦点为,此时直线的方程为 ,代入椭圆方程得,解得,代入直线的方程得 ,所以      
,故.     
(Ⅱ)当直线轴垂直时与题意不符.
设直线的方程为.代入椭圆方程得
解得,代入直线的方程得
所以D点的坐标为
又直线AC的方程为,又直线BD的方程为,联立得因此,又.所以.故为定值.  
考点:直线与圆锥曲线的综合问题 平面向量数量积的运算 椭圆的简单性质.
点评:本题主要考察了由椭圆的性质求解椭圆方程,直线与曲线相交的弦长公式的应用及向量的数量积的坐标表示的应用,属于圆锥曲线问题的综合应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直接坐标系中,直线的方程为,曲线的参数方程为为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.

(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点到两点的距离之和等于4,设点的轨迹为,直线与轨迹交于两点.
(Ⅰ)写出轨迹的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

查看答案和解析>>

同步练习册答案