精英家教网 > 高中数学 > 题目详情

在直接坐标系中,直线的方程为,曲线的参数方程为为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

(I)点P在直线上。(II)且最小值为

解析试题分析:(I)把极坐标系下的点化为直角坐标,得P(0,4)。
因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,
(II)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为

由此得,当时,d取得最小值,且最小值为
考点:极坐标与直角坐标的互化,椭圆的参数方程,点到直线的距离。
点评:中档题,利用化归与转化思想,应用,实现极坐标与直角坐标的互化。利用曲线的参数方程,往往可将问题转化成三角函数问题,利用三角函数的图象和性质,使问题得解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的左、右焦点分别为离心率为直线与C的两个交点间的距离为
(I)求
(II)设过的直线l与C的左、右两支分别相交有A、B两点,且证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的顶点A在射线上,两点关于x轴对称,0为坐标原点,且线段AB上有一点M满足当点A在上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设是否存在过的直线与W相交于P,Q两点,使得若存在,
求出直线;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与椭圆相交于两点,为坐标原点.
(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;
(Ⅱ)当点上且不是的顶点时,证明:四边形不可能为菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;
(3)设点关于轴的对称点为不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.

(I)当直线过椭圆右焦点时,求线段CD的长;
(II)当点P异于点B时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点在抛物线上.

(1)求抛物线的方程及其准线方程;
(2)过抛物线上的动点作抛物线的两条切线, 切点为.若的斜率乘积为,且,求的取值范围.

查看答案和解析>>

同步练习册答案