精英家教网 > 高中数学 > 题目详情

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求的取值范围.

(Ⅰ)  (Ⅱ) [

解析试题分析: (Ⅰ) 设F2(c,0),则

,所以c=1.
因为离心率e=,所以a=
所以椭圆C的方程为.                       6分
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0)

当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).
 得(x1+x2)+2(y1+y2)=0,
则-1+4mk=0,故k=
此时,直线PQ斜率为,PQ的直线方程为

联立 消去y,整理得
所以
于是(x1-1)(x2-1)+y1y2



令t=1+32m2,1<t<29,则
又1<t<29,所以
综上,的取值范围为[).                     15分
考点:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
点评:圆锥曲线问题每年高考都在压轴题的位置出现,难度较大,但是一般也离不开直线与圆联立方程,运算量较大,要注意数形结合、设而不求等方法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆是长轴的左、右端点,动点满足,联结,交椭圆于点

(1)当时,设,求的值;
(2)若为常数,探究满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直接坐标系中,直线的方程为,曲线的参数方程为为参数).
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点到两点的距离之和等于4,设点的轨迹为,直线与轨迹交于两点.
(Ⅰ)写出轨迹的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的左、右焦点,是椭圆上位于第一象限内的一点,点也在椭圆上,且满足是坐标原点),,若椭圆的离心率为.
(1)若的面积等于,求椭圆的方程;
(2)设直线与(1)中的椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,动点满足.
(1)求动点P的轨迹方程; 
(2)设(1)中所求轨迹与直线交于点两点 ,求证(为原点)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值的关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且为坐标原点),求曲线的方程.

查看答案和解析>>

同步练习册答案