如图,F1,F2是离心率为
的椭圆C:
(a>b>0)的左、右焦点,直线:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
的取值范围.
(Ⅰ)
(Ⅱ) [
,
)
解析试题分析: (Ⅰ) 设F2(c,0),则![]()
=
,所以c=1.
因为离心率e=
,所以a=
.
所以椭圆C的方程为
. 6分
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-
,此时P(
,0)、Q(
,0)
.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-
,m) (m≠0),A(x1,y1),B(x2,y2).
由
得(x1+x2)+2(y1+y2)
=0,
则-1+4mk=0,故k=
.
此时,直线PQ斜率为
,PQ的直线方程为
.
即
.
联立
消去y,整理得
.
所以
,
.
于是
(x1-1)(x2-1)+y1y2 ![]()
![]()
![]()
.
令t=1+32m2,1<t<29,则
.
又1<t<29,所以
.
综上,
的取值范围为[
,
). 15分
考点:本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
点评:圆锥曲线问题每年高考都在压轴题的位置出现,难度较大,但是一般也离不开直线与圆联立方程,运算量较大,要注意数形结合、设而不求等方法的应用.
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,
是长轴的左、右端点,动点
满足
,联结
,交椭圆于点
. ![]()
(1)当
,
时,设
,求
的值;
(2)若
为常数,探究
满足的条件?并说明理由;
(3)直接写出
为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系
中,直线
的方程为
,曲线
的参数方程为
(
为参数).
(I)已知在极坐标(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆
的左、右焦点,
是椭圆上位于第一象限内的一点,点
也在椭圆上,且满足
(
是坐标原点),
,若椭圆的离心率为
.
(1)若
的面积等于
,求椭圆的方程;
(2)设直线
与(1)中的椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,两焦点分别为
,点M是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点
在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点B(0,1),点C(0,—3),直线PB、PC都是圆
的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线
与(I)中的抛物线相交于M、N两点,问是否存在定点R,使
为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面内与两定点
连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线
的方程,并讨论
的形状与
值的关系;
(Ⅱ)当
时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com