如图,已知椭圆
,
是长轴的左、右端点,动点
满足
,联结
,交椭圆于点
. ![]()
(1)当
,
时,设
,求
的值;
(2)若
为常数,探究
满足的条件?并说明理由;
(3)直接写出
为常数的一个不同于(2)结论类型的几何条件.
科目:高中数学 来源: 题型:解答题
椭圆
的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(Ⅰ)若ΔABF2为正三角形,求椭圆的离心率;
(Ⅱ)若椭圆的离心率满足
,0为坐标原点,求证
为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在
轴上的椭圆
和双曲线
的离心率互为倒数,它们在第一象限交点的坐标为
,设直线
(其中
为整数).
(1)试求椭圆
和双曲线
的标准方程;
(2)若直线
与椭圆
交于不同两点
,与双曲线
交于不同两点
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
的离心率为
,
是其左右顶点,
是椭圆上位于
轴两侧的点(点
在
轴上方),且四边形
面积的最大值为4.![]()
(1)求椭圆方程;
(2)设直线
的斜率分别为
,若
,设△
与△
的面积分别为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
的顶点A在射线
上,
、
两点关于x轴对称,0为坐标原点,且线段AB上有一点M满足
当点A在
上移动时,记点M的轨迹为W.
(Ⅰ)求轨迹W的方程;
(Ⅱ)设
是否存在过
的直线
与W相交于P,Q两点,使得
若存在,
求出直线
;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F1,F2是离心率为
的椭圆C:
(a>b>0)的左、右焦点,直线:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com