精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)利用离心率和直线与焦点坐标得到两个等量关系,确定椭圆方程;(Ⅱ)利用直线与圆联立,借助韦达定理和中点坐标M在圆上建立等量关系.
试题解析:(Ⅰ)由题意得                               2分
解得                                     4分
所以椭圆C的方程为:                              6分
(Ⅱ)设点的坐标分别为,线段的中点为
,消去y得                8分
,∴                          9分
                          10分
∵点 在圆上,∴,即  13分
考点:1.椭圆方程;2.直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点的坐标分别是,直线相交于点,且它们的斜率之积为
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知是曲线上不同的两点,对于定点,有.试问无论两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的焦点在轴上
(Ⅰ)若椭圆的焦距为1,求椭圆的方程;
(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上.

查看答案和解析>>

同步练习册答案