精英家教网 > 高中数学 > 题目详情

已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.

(1);(2)存在,.

解析试题分析:(1)由,点代入椭圆方程,二者联立可以解出;(2)以的存在性分两种情况:①不存在,直线:,易证符合题意;②存在时,设直线:,用直线方程和椭圆方程联立方程组,消参得一元二次方程,利用韦达定理得,,又因为共线,有,由,得出,由于成立,所以点在直线上,综上:存在定直线:,使得的交点总在直线上,的值是.
试题解析:(1)由,               2分
又点在椭圆上,,              4分
所以椭圆方程是:;                       5分
(2)当垂直轴时,,则的方程是:
的方程是:,交点的坐标是:,猜测:存在常数,
即直线的方程是:使得的交点总在直线上,         6分
证明:设的方程是,点
的方程代入椭圆的方程得到:
即:,                  7分
从而:,                 8分
因为:共线
所以:,                  9分

要证明共线,即要证明,            10分
即证明:
即:
即:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的左焦点为,右焦点为

(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,设抛物线的焦点为,且其准线与轴交于,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为P.

(1)当时,求椭圆的方程;
(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案