已知椭圆
的右焦点为
,上顶点为B,离心率为
,圆
与
轴交于
两点
(Ⅰ)求
的值;
(Ⅱ)若
,过点
与圆
相切的直线
与
的另一交点为
,求
的面积
科目:高中数学 来源: 题型:解答题
如图,点
分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.![]()
(1)如果点
的坐标为(4,4),求椭圆
的方程;
(2)试判断直线
与椭圆
的公共点个数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,
焦点在x轴上,左、右焦眯分别为F1,F2,且|F1F2|=2,点P(1,
)在椭圆C上.
(I)求椭圆C的方程;
(II)过F1的直线l与椭圆C相交于A,B两点,且
的面积为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知左焦点为
的椭圆过点
.过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若
为线段
的中点,求
;
(3)若
,求证直线
恒过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线M:
的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.![]()
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的左焦点为
,右焦点为
.![]()
(Ⅰ)设直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设
为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,动点
到两点
,
的距离之和等于
,设点
的轨迹为曲线
,直线
过点
且与曲线
交于
,
两点.
(1)求曲线
的轨迹方程;
(2)是否存在△
面积的最大值,若存在,求出△
的面积;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,过
任作直线
(
与
轴不平行)交抛物线分别于
两点,点
关于
轴对称点为
,![]()
(1)求证:直线
与
轴交点
必为定点;
(2)过
分别作抛物线的切线,两条切线交于
,求
的最小值,并求当
取最小值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率等于
,点P
在椭圆上。
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com