在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
(1);(2)存在面积的最大值为.
解析试题分析:(1)根据椭圆的性质易得椭圆方程;(2)先设过点E的直线方程,然后把直线方程和椭圆方程联立得关于y的一元二次方程,解出,,则 ,从而得△面积的表达式,再由不等式性质求得面积最大值.
试题解析:(1)由椭圆定义可知,点P的轨迹C是以,为焦点,
长半轴长为2的椭圆, 3分
故曲线C的方程为. 6分
(2)存在面积的最大值. 7分
因为直线过点,可设直线的方程为或(舍),
则整理得 . 8分
由.设.
解得 , .则 .
因为. 11分
设,,.
则在区间上为增函数.所以.
所以,当且仅当时取等号,即.
所以的最大值为. 14分
考点:1、椭圆的标准方程及性质;2、直线与椭圆相交问题;3、不等式的性质.
科目:高中数学 来源: 题型:解答题
设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.
(I)求抛物线与圆的方程;
(II)过且斜率为的直线与交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点、,的中垂线与轴交于点,求点的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆与轴相切,求圆被直线截得的线段长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率为,
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于,两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com