给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,过任作直线(与轴不平行)交抛物线分别于两点,点关于轴对称点为,
(1)求证:直线与轴交点必为定点;
(2)过分别作抛物线的切线,两条切线交于,求的最小值,并求当取最小值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(1)求抛物线的标准方程;
(2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线与轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com