精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(1)求抛物线的标准方程;
(2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

(1);(2).

解析试题分析:(1)设出抛物线方程,求出p,得到标准方程;(2)把直线方程代入抛物线方程,得到一元二次方程,根据韦达定理得到,转化得到,根据求出的取值范围为 .
试题解析:(1) 设抛物线方程为

由已知得: 所以
所以抛物线的标准方程为   
(2) 因为直线与圆相切,
所以  
把直线方程代入抛物线方程并整理得:
 

  




 
因为点在抛物线上,
所以,
    
因为
所以  或
所以 的取值范围为 .
考点:抛物线标准方程,联立法解直线与抛物线位置关系问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定圆:及抛物线:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C过点,两个焦点为
(1)求椭圆C的方程;
(2)是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆轴相切,求圆被直线截得的线段长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;(2)求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且经过点
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.

查看答案和解析>>

同步练习册答案