已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(1)求抛物线的标准方程;
(2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点,两个焦点为.
(1)求椭圆C的方程;
(2)是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆与轴相切,求圆被直线截得的线段长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.
(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线交于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com