如图,点分别是椭圆C:的左、右焦点,过点作轴的垂线,交椭圆的上半部分于点,过点作的垂线交直线于点.
(1)如果点的坐标为(4,4),求椭圆的方程;
(2)试判断直线与椭圆的公共点个数,并证明你的结论.
(1);(2)1个.
解析试题分析:(1)要求椭圆方程,由于,需要通过已知条件表示出点的坐标,由于轴,则,代入椭圆方程求得点的纵坐标,从而求得直线的斜率,根据求的直线的斜率,有直线方程的点斜式求出直线的方程,直线的方程与联立求得点的坐标,从而求得、,由于椭圆中可求出,即可求得椭圆的方程;(2)要判断直线与椭圆的公共点个数,需要求出直线的方程,与椭圆方程联立,消去或得到关于或得一元二次方程,通过判断这个方程的的根的情况,即可得出所求的交点的个数.
试题解析:解方程组得点的坐标为,,
,,直线的方程为,
将代入上式解得,. 4分
(1)因为点的坐标为(4,4),所以,解得,,
椭圆的方程为. 7分
(2),则 点的坐标为,
,
的方程为,即, 9分
将的方程代入椭圆的方程得,
①
,
方程①可化为,
解得,
所以直线与椭圆只有一个公共点 13分
考点:椭圆的性质,直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.
(1)若,求矩形ABCD面积;
(2)若,求矩形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线上的定点时,求直线的方程;
(Ⅲ)当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线的焦点为,准线为,,以为圆心的圆与相切于点,的纵坐标为,是圆与轴除外的另一个交点.
(I)求抛物线与圆的方程;
(II)过且斜率为的直线与交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆与、两点,且、、成等差数列,点M(1,1),求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com