精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.

(Ⅰ)椭圆的标准方程为
(Ⅱ)直线l过定点,定点坐标为

解析试题分析:(Ⅰ)因为椭圆C上的点到焦点距离的最大值为,最小值为.在椭圆中,可求,再根据椭圆的标准方程为求得.
(Ⅱ)联立直线l与椭圆方程得的一元二次方程,因为以AB为直径的圆过椭圆的右顶点D(2,0),所以,故,可得的关系式,再由点斜式的直线方程写出直线l过定点,注意检验.
试题解析:(Ⅰ)由题意设椭圆的标准方程为
由已知得:

(Ⅱ)设,联立
,则


因为以AB为直径的圆过椭圆的右顶点D(2,0),

,直线过定点(2,0),与已知矛盾;

所以,直线l过定点,定点坐标为
考点:1、椭圆的标准方程;2、直线与椭圆的位置关系;3、韦达定理;4、直线的点斜式方程;5、点与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,其左焦点到点的距离为.
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆交于不同的两点,则内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线为坐标原点,动直线
抛物线交于不同两点
(1)求证:·为常数;
(2)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,
面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线在矩阵的变换作用下得到曲线
(Ⅰ)求矩阵
(Ⅱ)求矩阵的特征值及对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线.过点的直线两点.抛物线在点处的切线与在点处的切线交于点

(Ⅰ)若直线的斜率为1,求
(Ⅱ)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点分别是椭圆C:的左、右焦点,过点轴的垂线,交椭圆的上半部分于点,过点的垂线交直线于点.

(1)如果点的坐标为(4,4),求椭圆的方程;
(2)试判断直线与椭圆的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知左焦点为的椭圆过点.过点分别作斜率为的椭圆的动弦,设分别为线段的中点.
(1)求椭圆的标准方程;
(2)若为线段的中点,求
(3)若,求证直线恒过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案