已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求
的最小值.
(Ⅰ)当x≥0时,y2=4x;当x<0时,y=0;(Ⅱ)16.
解析试题分析:(Ⅰ)要求动点P的轨迹C,设动点P的坐标为(x,y),根据题意列出关系式
-|x|=1,化简得y2=2x+2|x|,式中有绝对值,需要根据x讨论为当x≥0时,y2=4x;当x<0时,y=0;(Ⅱ)由题意知,直线l1的斜率存在且不为0,可以设为k,则l1的方程为y=k(x-1),联立
得k2x2-(2k2+4)x+k2=0,接着设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+
,x1x2=1.而l1⊥l2,则l2的斜率为-
,设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1,利用坐标表示出
,化简得
=8+4(k2+
)≥8+4×2
=16,故当且仅当k2=
,即k=±1时,
取最小值16.
试题解析:(Ⅰ)设动点P的坐标为(x,y),由题意有
-|x|=1,
化简,得y2=2x+2|x|.
当x≥0时,y2=4x;当x<0时,y=0.
∴动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).
(Ⅱ)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k(x-1).
由
得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是
x1+x2=2+
,x1x2=1.
∵l1⊥l2,∴l2的斜率为-
.
设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.
故
=(
+
)·(
+
)=
·
+
·
+
·
+
·![]()
=|
||
|+|
||
|
=(x1+1)(x2+1)+(x3+1)(x4+1)
=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1
=1+(2+
)+1+1+(2+4k2)+1
=8+4(k2+
)≥8+4×2
=16.
当且仅当k2=
,即k=±1时,
取最小值16.
考点:1.曲线的轨迹方程求解;2.直线与圆锥曲线问题.
科目:高中数学 来源: 题型:解答题
如图,直线y=kx+b与椭圆
交于A、B两点,记△AOB的面积为S.![]()
(1)求在k=0,0<b<1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:
与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
:
的左、右焦点分别是
、
,下顶点为
,线段
的中点为
(
为坐标原点),如图.若抛物线
:
与
轴的交点为
,且经过
、
两点.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
为抛物线
上的一动点,过点
作抛物线
的切线交椭圆
于
、
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线
的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线
与圆
的方程;
(II)过
且斜率为
的直线
与
交于
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线
以椭圆
的两个焦点为焦点,且双曲线
的一条渐近线是
,
(1)求双曲线
的方程;
(2)若直线
与双曲线
交于不同两点
,且
都在以
为圆心的圆上,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点F在
轴上,离心率
,点
在椭圆C上.
(1)求椭圆
的标准方程;
(2)若斜率为![]()
的直线
交椭圆
与
、
两点,且
、
、
成等差数列,点M(1,1),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,
)。
(I)求椭圆C的方程;
(II)过P点分别以
为斜率的直线分别交椭圆C于A,B,M,N,求证:
使得![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com