精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.

(Ⅰ)椭圆的标准方程为
(Ⅱ)直线l过定点,定点坐标为

解析试题分析:(Ⅰ)因为椭圆C上的点到焦点距离的最大值为,最小值为.在椭圆中,可求,再根据椭圆的标准方程为求得.
(Ⅱ)联立直线l与椭圆方程得的一元二次方程,因为以AB为直径的圆过椭圆的右顶点D(2,0),所以,故,可得的关系式,再由点斜式的直线方程写出直线l过定点,注意检验.
试题解析:(Ⅰ)由题意设椭圆的标准方程为
由已知得:

(Ⅱ)设,联立
,则


因为以AB为直径的圆过椭圆的右顶点D(2,0),

,直线过定点(2,0),与已知矛盾;

所以,直线l过定点,定点坐标为
考点:1、椭圆的标准方程;2、直线与椭圆的位置关系;3、韦达定理;4、直线的点斜式方程;5、点与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆锥曲线的两个焦点坐标是,且离心率为
(Ⅰ)求曲线的方程;
(Ⅱ)设曲线表示曲线轴左边部分,若直线与曲线相交于两点,求的取值范围;
(Ⅲ)在条件(Ⅱ)下,如果,且曲线上存在点,使,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线为坐标原点,动直线
抛物线交于不同两点
(1)求证:·为常数;
(2)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.
(1)求证:OA⊥OB;
(2)当DAOB的面积等于时,求k的值. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,
面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线在矩阵的变换作用下得到曲线
(Ⅰ)求矩阵
(Ⅱ)求矩阵的特征值及对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点分别是椭圆C:的左、右焦点,过点轴的垂线,交椭圆的上半部分于点,过点的垂线交直线于点.

(1)如果点的坐标为(4,4),求椭圆的方程;
(2)试判断直线与椭圆的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦眯分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)过F1的直线l与椭圆C相交于A,B两点,且的面积为,求直线l的方程.

查看答案和解析>>

同步练习册答案