精英家教网 > 高中数学 > 题目详情

已知圆锥曲线的两个焦点坐标是,且离心率为
(Ⅰ)求曲线的方程;
(Ⅱ)设曲线表示曲线轴左边部分,若直线与曲线相交于两点,求的取值范围;
(Ⅲ)在条件(Ⅱ)下,如果,且曲线上存在点,使,求的值.

(Ⅰ);(Ⅱ);(Ⅲ).

解析试题分析:(Ⅰ)由知圆锥曲线为双曲线,再由焦点坐标知,从而得,即双曲线的方程是;(Ⅱ)设出两点的坐标,再将直线与曲线方程联立,知方程应有两个根.再由二次项的系数、根的判别式、以及这两根应为负根,即两根之和小于0,两根之积大于0.从而得到的取值范围;(Ⅲ)由结合上问的取值范围从而得到,然后由通过向量的坐标表示得到点,代入曲线的方程即可.
试题解析:(Ⅰ)由知,曲线是以为焦点的双曲线,且
故双曲线的方程是.                       (3分)
(Ⅱ)设,联立方程组:
从而有:为所求.         (8分)
(Ⅲ)因为
整理得
注意到,所以,故直线的方程为.  (10分)
,由已知
,所以
在曲线上,得
但当时,所得的点在双曲线的右支上,不合题意,
所以为所求.                        (13分)
考点:1.双曲线的几何性质;2.一元二次方程根的分布;3.直线与圆锥曲线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的离心率为,右焦点为(,0).
(I)求椭圆的方程;
(Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在抛物线 y2=4x上恒有两点关于直线l:y=kx+3对称,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.

(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C.

(1)若,求矩形ABCD面积;
(2)若,求矩形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案