精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.

(Ⅰ);(Ⅱ)①;②.

解析试题分析:(Ⅰ)根据已知条件可设椭圆方程为:,则有,求解即可得到的值,将对应的解代入椭圆方程即可;(Ⅱ)①将直线方程代入椭圆方程求得,,求得两点的横坐标之和为,由已知条件“中点的横坐标为”,得到,从而解得的值;
②根据①的两点的坐标求得③,结合两点坐标满足直线方程,将③式化简整理得,再由①中的根与系数的关系:,代入化简即可.
试题解析:(Ⅰ)因为满足
解得
则椭圆方程为:.                3分
(Ⅱ)①将代入中得,

,则
因为中点的横坐标为,所以
解得.            6分
②由①知,
所以




.                  12分
考点:1.椭圆的标准方程;2.椭圆的性质;3.方程的根与系数的关系;4.中点坐标公式;5.平面向量的数量积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,求曲线过点的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点O,焦点在x轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线的斜率依次成等比数列,
面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆经过点,且和直线相切,
(1)求动圆圆心的轨迹C的方程;
(2)已知曲线C上一点M,且5,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线.过点的直线两点.抛物线在点处的切线与在点处的切线交于点

(Ⅰ)若直线的斜率为1,求
(Ⅱ)求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是
(1)求双曲线的方程;
(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.
(1)若直线的斜率为,求证:
(2)设直线的斜率分别为,求的值.

查看答案和解析>>

同步练习册答案