如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
科目:高中数学 来源: 题型:解答题
如图示:已知抛物线的焦点为,过点作直线交抛物线于、两点,经过、两点分别作抛物线的切线、,切线与相交于点.
(1)当点在第二象限,且到准线距离为时,求;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点、,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线。
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长是,求。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2为的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为()的直线与椭圆相交于两点,A为椭圆的右顶点,直线、分别交直线于点、,线段的中点为,记直线的斜率为.求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为.
(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆与轴有两个交点,求点横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com