精英家教网 > 高中数学 > 题目详情

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

(Ⅰ);(Ⅱ)详见解析.

解析试题分析:(Ⅰ)由的面积为12,点到直线的距离为,列出关于的方程求解;(Ⅱ)用坐标表示各点,然后求出的长,计算比较即可.
试题解析:(Ⅰ)如图1,当时,过点
的面积为12,,即.①               2分
此时直线方程为
∴点的距离. ②    4分
由①②解得.            6分
∴所求椭圆方程为.      7分
(Ⅱ)如图2,当时,,设
三点共线,及
(说明:也可通过求直线方程做)

,即.  9分
三点共线,及

,即.  11分
.            13分
.  15分
,即有成等比数列.                      16分
考点:椭圆的标准方程、点到直线的距离、等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点的坐标分别是,直线相交于点,且它们的斜率之积为
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:  (a>b>0)的两个焦点和短轴的两个端点都在圆上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案