在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
(1) ; (2) .
解析试题分析:(1)设出焦点,由条件为等腰三角形,分析出,代入两点间距离公式,利用消去,得a、c的关系,得出e的值;(2)由得,,推出椭圆方程,由即,,得,得,与椭圆:联立得交点A,B的坐标,再表示,代入中,整理得点的轨迹方程.
试题解析:(1)设,
由题意,可得,即, 2分
整理得,得 (舍)或,所以. 4分
(2)由(1)知,,可得椭圆方程为.
直线方程为 5分
两点的坐标满足方程组,消去y并整理得 6分
解得得方程组的解, 8分
不妨设,,设的坐标为
则,, 10分
由得.
于是, 11分
由得,
化简得, 13分
将代入得,
由得.因此,点的轨迹方程是. 14分
考点:1.两点间距离公式;2.斜率公式.
科目:高中数学 来源: 题型:解答题
抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线与轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆的右焦点,圆与轴交于两点,是椭圆与圆的一个交点,且.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线与的另一交点为,且的面积等于,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面内,y轴右侧的一动点P到点的距离比它到轴的距离大
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设为曲线上的一个动点,点,在轴上,若为圆的外切三角形,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com