精英家教网 > 高中数学 > 题目详情

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

(1)根据题意只要证明∴以线段AF为直径的圆与x轴相切
(2)
(3)

解析试题分析:(1)解法一(几何法)设线段AF中点为,过垂直于x轴,垂足为,则
 ,     2分
又∵,       3分
∴以线段AF为直径的圆与x轴相切。     4分 
解法二(代数法)设,线段AF中点为,过垂直于x轴,
垂足为,则
.      2分
又∵点为线段AF的中点,∴,     3分

∴以线段AF为直径的圆与x轴相切。     4分

(2)设直线AB的方程为
 ,
.     5分

     6分
,故的外接圆圆心为线段的中点。
设线段AB中点为点P,易证⊙P与抛物线的准线相切,切点为点M ,
.  7分
 8分

 .     9分
(3),设,10分
 ,设,则
       11分
代入可得: . ①     12分

联立可得,②     13分
联立①②可得 ,解得
。      14分
考点:直线与椭圆的位置关系
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标平面内,y轴右侧的一动点P到点的距离比它到轴的距离大
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设为曲线上的一个动点,点轴上,若为圆的外切三角形,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,过轴上一点的直线与抛物线交于点两点。
证明,存在唯一一点,使得为常数,并确定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过的两条弦相交于点(异于两点),且

(1)求椭圆的方程;
(2)求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知,直线, 动点的距离是它到定直线距离的倍. 设动点的轨迹曲线为
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点的距离分别为,试判断是否为常数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线是曲线的一条切线,
(Ⅰ)求切点坐标及的值;
(Ⅱ)当时,存在,求实数的取值范围.

查看答案和解析>>

同步练习册答案