如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。
(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。
(1)根据题意只要证明∴以线段AF为直径的圆与x轴相切
(2)
(3)。
解析试题分析:(1)解法一(几何法)设线段AF中点为,过作垂直于x轴,垂足为,则
, 2分
又∵, 3分
∴∴以线段AF为直径的圆与x轴相切。 4分
解法二(代数法)设,线段AF中点为,过作垂直于x轴,
垂足为,则,
∴. 2分
又∵点为线段AF的中点,∴, 3分
∴,
∴以线段AF为直径的圆与x轴相切。 4分
(2)设直线AB的方程为,,
由 ,
∴. 5分
由,
, 6分
,故的外接圆圆心为线段的中点。
设线段AB中点为点P,易证⊙P与抛物线的准线相切,切点为点M ,
. 7分
8分
又,
. 9分
(3),设,10分
则 ,设,则
11分
将代入可得: . ① 12分
由,
联立可得,② 13分
联立①②可得 ,解得.
。 14分
考点:直线与椭圆的位置关系
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面内,y轴右侧的一动点P到点的距离比它到轴的距离大
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设为曲线上的一个动点,点,在轴上,若为圆的外切三角形,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过,的两条弦,相交于点(异于,两点),且.
(1)求椭圆的方程;
(2)求证:直线,的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知,直线, 动点到的距离是它到定直线距离的倍. 设动点的轨迹曲线为.
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点、到的距离分别为,试判断是否为常数,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com