精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过的两条弦相交于点(异于两点),且

(1)求椭圆的方程;
(2)求证:直线的斜率之和为定值.

(1)
(2)0

解析试题分析:(1)解:由题意,得,故
从而
所以椭圆的方程为.      ①                   5分
(2)证明:设直线的方程为,   ②
直线的方程为,   ③                             7分
由①②得,点的横坐标为
由①③得,点的横坐标为,                9分

则直线的斜率之和为


                        13分

.                                                   16分
考点:直线与椭圆的位置关系
点评:主要是考查了直线椭圆的位置关系的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称
点为(不重合) 试问:直线轴的交点是否是定点?若是,求出定点,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为半圆,为半圆直径,为半圆圆心,且为线段的中点,已知,曲线点,动点在曲线上运动且保持的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线与曲线交于两点,与所在直线交于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,设动点到定点的距离与到定直线的距离相等,记的轨迹为.又直线的一个方向向量且过点交于两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.

(I)求y1y2的值;
(Ⅱ)求讧:|PM|="|" PN|

查看答案和解析>>

同步练习册答案