以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
科目:高中数学 来源: 题型:解答题
已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点,两个焦点为.
(1)求椭圆C的方程;
(2)是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知,,,直线与线段、分别交于点、.
(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线交于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:()上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,,点是右准线上任意一点,过作直 线的垂线交椭圆于点.
(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左右顶点分别为,离心率.过该椭圆上任一点作轴,垂足为,点在的延长线上,且.
(1)求椭圆的方程;
(2)求动点的轨迹的方程;
(3)设直线(点不同于)与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称
点为(不重合) 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com