已知椭圆:
(
)上任意一点到两焦点距离之和为
,离心率为
,左、右焦点分别为
,
,点
是右准线上任意一点,过
作直 线
的垂线
交椭圆于
点.![]()
(1)求椭圆
的标准方程;
(2)证明:直线
与直线
的斜率之积是定值;
(3)点
的纵坐标为3,过
作动直线
与椭圆交于两个不同点
,在线段
上取点
,满足
,试证明点
恒在一定直线上.
(1)
;(2)证明详见解析;(3)证明详见解析.
解析试题分析:(1)利用椭圆的定义、离心率的定义、
的关系列出方程组,解得
的值;(2)由右准线方程设出
点坐标,由垂直的充要条件得
,表达出
,将
点代入椭圆
中,即
,代入
中,化简得常数;(3)设出点
,代入椭圆方程中,设
,由
得向量关系,得到
与
的关系,据
与
及
与
系数比为2:3,得
在直线
.
试题解析:(1)由题意可得
,解得
,
,
,
所以椭圆
:
. 2分
(2)由(1)可知:椭圆的右准线方程为
,
设
,
因为PF2⊥F2Q,所以
,
所以
,
又因为
且
代入化简得
.
即直线
与直线
的斜率之积是定值
. 7分.
(3)设过
的直线l与椭圆交于两个不同点
,点
,则
,
.
设
,则
,
∴
,
,
整理得
,
,
,
∴从而
,
由于
,
,∴我们知道
与
的系数之比为2:3,
与
的系数之比为2:3.
∴
,
所以点
恒在直线
上. 13分
考点:1.椭圆的定义;2.离心率的定义;3.垂直的充要条件.
科目:高中数学 来源: 题型:解答题
已知双曲线
(a>0,b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离是
.
(Ⅰ)求双曲线的方程及渐近线方程;
(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,点P(-1,0)是其准线与
轴的焦点,过P的直线
与抛物线C交于A、B两点.
(1)当线段AB的中点在直线
上时,求直线
的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为
.![]()
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
经过点
,且双曲线
的渐近线与圆
相切.
(1)求双曲线
的方程;
(2)设
是双曲线
的右焦点,
是双曲线
的右支上的任意一点,试判断以
为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(t为参数,0<a<
),曲线C的极坐标方程为
.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.![]()
(1)求椭圆
的方程;
(2)求
的最小值,并求此时圆
的方程;
(3)设点
是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,
求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的四个顶点恰好是一边长为2,一内角为
的菱形的四个顶点.
(I)求椭圆
的方程;
(II)直线
与椭圆
交于
,
两点,且线段
的垂直平分线经过点
,求
(
为原点)面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com