精英家教网 > 高中数学 > 题目详情

已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)根据斜率公式,有斜率乘积等于整理即得,注意;(Ⅱ)设直线的方程,与椭圆方程组成方程组,消去,由韦达定理求点的坐标,根据直线与以为直径的圆的另一个交点为,得,从而得到直线的方程,确定恒过的定点.
试题解析:(Ⅰ)设,由得  ,其中,
整理得点的轨迹方程为.                   (4分)
(Ⅱ)设点,则直线的方程为
解方程组,消去
,则,(8分)
从而,又

直线与以为直径的圆的另一个交点为
方程为,即,过定点,        (12分)
考点:椭圆方程,直线与椭圆的关系,定点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆中心在坐标原点,是它的两个顶点,直线与直线相交于点D,与椭圆相交于两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C过点,两个焦点为
(1)求椭圆C的方程;
(2)是椭圆C上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,点是右准线上任意一点,过作直 线的垂线交椭圆于点.

(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点轴,垂足为,点的延长线上,且
(1)求椭圆的方程;
(2)求动点的轨迹的方程;
(3)设直线点不同于)与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

同步练习册答案