精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

(I)-3.(II)直线l过定点(2,0).

解析试题分析:(I)注意到抛物线的焦点为(1,0),因此可设并代入抛物线y2=4x中消去
应用韦达定理得到从而易于将用坐标表示.
(II)设代入方程消去得,
得到.
用坐标表示,得到的方程,通过确定,达到证明直线过定点的目的.
试题解析:(I)由题意知,抛物线的焦点为(1,0),
代入抛物线中消去x得,
,设
        6分
(II)设代入方程消去得,
得到

=b2-4b.
∴直线l过定点(2,0).        12分
考点:抛物线的几何性质,直线与抛物线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为D,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三点P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为,求以为焦点且过点的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是抛物线上的点,的焦点, 以为直径的圆轴的另一个交点为.
(Ⅰ)求的方程;
(Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为4,且过点
(1)求椭圆的方程;
(2)设是椭圆上的三点,若,点为线段的中点,两点的坐标分别为,求证:

查看答案和解析>>

同步练习册答案