精英家教网 > 高中数学 > 题目详情

已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点轴作垂线为垂足.
(Ⅰ)求线段中点的轨迹方程;
(Ⅱ)已知直线的轨迹相交于两点,求的面积

(1);(2)

解析试题分析:(1)本题一般用动点转移法求轨迹方程,设动点的坐标为,则点的坐标为,而点又是已知圆的点,把点坐标代入圆的方程即能求出动点的轨迹方程;(2)直接列方程组求出交点的坐标,然后选用相应面积公式计算面积(本题中以OB为底,高就是点A的纵坐标的绝对值).
试题解析:(1)设,         1分
由中点公式得:         3分
因为在圆上,
的轨迹方程为        6分
(2)据已知        8分
        10分
        12分
考点:(1)动点转移法求轨迹方程;(2)三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.
(Ⅰ)求,的方程;
(Ⅱ)过作两条互相垂直的直线,其中相交于点,相交于点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点.(12分)

(1)求椭圆的方程;(3分)
(2)求的最小值,并求此时圆的方程;(4分)
(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.(5分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ)求抛物线的方程;
(Ⅱ)当点为直线上的定点时,求直线的方程;
(Ⅲ)当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点为动点,分别为椭圆的左、右焦点.已知为等腰三角形.

(1)求椭圆的离心率
(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹
方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,准线为,以为圆心的圆相切于点的纵坐标为是圆轴除外的另一个交点.
(I)求抛物线与圆的方程;
(II)过且斜率为的直线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.

查看答案和解析>>

同步练习册答案