已知椭圆
过点
,且离心率
。
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为D,且满足
,试判断直线
是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。
(1)
;(2)![]()
解析试题分析:(1)本小题通过待定系数法列出两个关于
的方程.通过解方程组求出椭圆方程.包含着二次方的运算需掌握.(2)本小题是直线与椭圆的位置关系的问题.这类题目的常用思路就是联立直线方程和椭圆方程通过消元得到一个二次方程,确定判别式的情况.正确书写利用韦达定理.
,
两点(
不是左右顶点),椭圆的右顶点为D,且满足
,D点不是左右定点要关注.根据向量的数量积为零.可得到关于两个根的等式.再利用韦达定理即可得关于m,k的等式.从而就可得相应的结论.
试题解析:(Ⅰ)由题意椭圆的离心率
。
![]()
∴椭圆方程为
2分
又点
在椭圆上![]()
![]()
∴椭圆的方程为
4分
(II)设
,由
得
,
,
.![]()
![]()
![]()
![]()
所以
,又椭圆的右顶点![]()
,
,
,
,解得
,且满足
.
当
时,
,直线过定点
与已知矛盾;
当
时,
,直线过定点![]()
综上可知,直线
过定点,定点坐标为
考点:1.直线与圆的位置关系.2.韦达定理3.向量积的问题.4.过定点的问题.5.直线与椭圆的综合问题.
科目:高中数学 来源: 题型:解答题
(13分)点P为圆
上一个动点,M为点P在y轴上的投影,动点Q满足
.
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点
,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为
,点
是点
关于
轴的对称点,过点
的直线交抛物线于
两点。
(Ⅰ)试问在
轴上是否存在不同于点
的一点
,使得
与
轴所在的直线所成的锐角相等,若存在,求出定点
的坐标,若不存在说明理由。
(Ⅱ)若
的面积为
,求向量
的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线
上任意一点
到直线
的距离是它到点
距离的
倍;曲线
是以原点为顶点,
为焦点的抛物线.
(Ⅰ)求
,
的方程;
(Ⅱ)过
作两条互相垂直的直线
,其中
与
相交于点
,
与
相交于点
,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
,
、
是双曲线的左右顶点,
是双曲线上除两顶点外的一点,直线
与直线
的斜率之积是
,
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是
,求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
与椭圆
有公共焦点
,且椭圆过点![]()
.
(1)求椭圆方程;
(2)点
、
是椭圆的上下顶点,点
为右顶点,记过点
、
、
的圆为⊙
,过点
作⊙
的切线
,求直线
的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点
、
,试问直线
是否经过定点,若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,
为坐标原点,如果一个椭圆经过点P(3,
),且以点F(2,0)为它的一个焦点.
(1)求此椭圆的标准方程;
(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.(12分)![]()
(1)求椭圆
的方程;(3分)
(2)求
的最小值,并求此时圆
的方程;(4分)
(3)设点
是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.(5分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,直线l与抛物线
相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求
的值;
(II)如果
,证明直线l必过一定点,并求出该定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com