已知抛物线与椭圆有公共焦点,且椭圆过点.
(1)求椭圆方程;
(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
(1);(2)或;(3).
解析试题分析:(1)由题目给出的条件直接求解的值,则可求出椭圆方程;(2)当所求直线斜率不存在时,其方程为,符合题意;当直线斜率存在时,可设其斜率为,写出直线的点斜式方程,因为直线与圆相切,所以根据圆心到直线的距离等于圆的半径可直接求得直线的斜率,从而得到方程;(3)由题意可知,两直线的斜率都存在,设AP:,代入椭圆的方程从而求出点的坐标,同理再求出点的坐标,从而可求出直线的方程,由方程可知当时,恒成立,所以直线恒过定点.
试题解析:
(1),则c=2, 又,得
∴所求椭圆方程为 .
(2)M,⊙M:,直线l斜率不存在时,,
直线l斜率存在时,设为,
∴,解得,
∴直线l为或 .
(3)显然,两直线斜率存在, 设AP:,
代入椭圆方程,得,解得点,
同理得,直线PQ:,
令x=0,得,∴直线PQ过定点.
考点:本题考查了椭圆的标准方程,考查了椭圆的简单几何性质,考查了直线和圆锥曲线的关系,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
科目:高中数学 来源: 题型:解答题
(13分)如图,某隧道设计为双向四车道,车道总宽20m,要求通行车辆限高5m,隧道全长2.5km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆。
(1)若最大拱高h为6 m,则隧道设计的拱宽是多少?
(2)若要使隧道上方半椭圆部分的土方工程 量最小,则应如何设计拱高h和拱宽?(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高。)
(3)为了使隧道内部美观,要求在拱线上找两个点M、N,使它们所在位置的高度恰好是限高5m,现以M、N以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定M、N的位置以及的值,使总造价最少。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,离心率,右焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线的方程;若不存在,简要说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点为,,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过的直线与椭圆交于、两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,且离心率。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为D,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com