精英家教网 > 高中数学 > 题目详情

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点 为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

(1)        (2)

解析试题分析:解:(1)设椭圆的标准方程为).
因为,所以
故椭圆的标准方程为.               6分
(2)设双曲线的标准方程为).
因为双曲线过点,所以,解得
故双曲线的方程为,即.    12
考点:圆锥曲线的方程
点评:主要是考查了圆锥曲线的性质与方程的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为,设直线与曲线分别交于
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.

(I)求y1y2的值;
(Ⅱ)求讧:|PM|="|" PN|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动圆M过定点A(-,0),且与定圆A´:(x-)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.

查看答案和解析>>

同步练习册答案