以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为,设直线与曲线分别交于;
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.
科目:高中数学 来源: 题型:解答题
如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线C:(a>0,b>0)的左、右焦点分别为、,离心率为3,直线y=2与C的两个交点间的距离为.
(Ⅰ)求a,b;
(Ⅱ)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:、、成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的椭圆C:的一个焦点为,为椭圆C上一点,的面积为.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线,使得直线与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com