精英家教网 > 高中数学 > 题目详情

已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.

(1),C的图象是椭圆.
(2)(i) 。(ii)当过点时取最大值2

解析试题分析:(1)设,由题动点M满足:         1分

其中:
...2分
代入,化简得:
C的图象是椭圆,如图所示.          4分
(2)(i)设
          5分
         6分
                       7分
(ii)解法一、设切线为,由题与圆相切,得
8分
再由,得         9分
          10分
由(i)知,所以
11分
                      . 2分
,当时,取最大值2         13分
的最大值为2.          ...14分
解法二、
由(i)同理得,则

过点时取最大值2
考点:本题主要考查椭圆的标准方程,椭圆的几何性质,直线与圆、直线与椭圆的位置关系,弦长公式。
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。涉及弦长问题,一般要利用韦达定理,简化解题过程。本题“几何味”较浓,应认真分析几何特征。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为,设直线与曲线分别交于
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动圆M过定点A(-,0),且与定圆A´:(x-)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足. 当时,试证明直线过定点.过定点(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到两点的距离之和为,设点的轨迹为曲线.
(1)写出的方程;
(2)设过点的斜率为)的直线与曲线交于不同的两点,,点轴上,且,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,它的一个顶点恰好是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆相切,直线轴交于点,当为何值时的面积有最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

查看答案和解析>>

同步练习册答案