给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.
(1)(2)
解析试题分析:解:(1)由已知可得:定圆的圆心为(-3,0),且M到(-3,0)的距离比它到直线的距离大1,∴M到(-3,0)的距离等于它到直线的距离,
∴动圆圆心M的轨迹为以F(-3,0)为焦点,直线为准线的抛物线,开口向左,
, ∴动圆圆心M的轨迹C的方程为:
(也可以用直接法:,然后化简即得:);
(2)方法一:经分析:OA,OB的斜率都存在,都不为0,设OA:,则OB:,
联立和的方程求得A(,),同理可得B(,),
∴, 即: ,
令,则,∴,∴直线AB与x轴交点为定点,
其坐标为。方法二:当AB垂直x轴时,设A,则B,
∵∴,∴
此时AB与x轴的交点为;
当AB不垂直x轴时,设AB:,联立和有:
,∴,
∵∴,即:,
∴AB:,此时直线AB与x轴交点为定点,其坐标为,
综上:直线AB与x轴交点为定点,其坐标为。
考点:抛物线的方程;
点评:对于题目涉及到关于直线和其他曲线的交点时,一般都可以用到跟与系数的关系式:在一元二次方程中,。
科目:高中数学 来源: 题型:解答题
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.
(Ⅰ)求点T的横坐标;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为。
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线与抛物线相切于点,且与轴交于点,为坐标原点,定点的坐标为.
(1)若动点满足,求点的轨迹;
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点(在之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为.
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点的直线交直线于,过点的直线交轴于点,,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点、,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com