精英家教网 > 高中数学 > 题目详情

给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

(1)(2)

解析试题分析:解:(1)由已知可得:定圆的圆心为(-3,0),且M到(-3,0)的距离比它到直线的距离大1,∴M到(-3,0)的距离等于它到直线的距离,
∴动圆圆心M的轨迹为以F(-3,0)为焦点,直线为准线的抛物线,开口向左,
, ∴动圆圆心M的轨迹C的方程为:
(也可以用直接法:,然后化简即得:);
(2)方法一:经分析:OA,OB的斜率都存在,都不为0,设OA:,则OB:
联立的方程求得A(),同理可得B(),
, 即: ,
,则,∴,∴直线AB与x轴交点为定点,
其坐标为。方法二:当AB垂直x轴时,设A,则B
,∴
此时AB与x轴的交点为
当AB不垂直x轴时,设AB:,联立有:
,∴
,即:
∴AB:,此时直线AB与x轴交点为定点,其坐标为,
综上:直线AB与x轴交点为定点,其坐标为
考点:抛物线的方程;
点评:对于题目涉及到关于直线和其他曲线的交点时,一般都可以用到跟与系数的关系式:在一元二次方程中,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动点到点的距离与到直线的距离之比为定值,记的轨迹为

(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹两点.
(i)证明:
(ii)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.
(Ⅰ)求点T的横坐标
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点,且与轴交于点为坐标原点,定点的坐标为.

(1)若动点满足,求点的轨迹
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆()过点,其左、右焦点分别为,且.
(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

同步练习册答案