精英家教网 > 高中数学 > 题目详情

已知椭圆()过点,其左、右焦点分别为,且.
(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

(1)(2)圆必过定点

解析试题分析:解:(1)设点的坐标分别为,则,故,可得
所以
,所以椭圆的方程为
(2)设的坐标分别为,则. 由,可得,即
又圆的圆心为半径为,故圆的方程为,即,也就是,令,可得
故圆必过定点
考点:椭圆的定义,直线与圆的位置关系
点评:主要是考查了直线与圆的位置关系,以及椭圆的定义的运用属于九重天。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到两点的距离之和为,设点的轨迹为曲线.
(1)写出的方程;
(2)设过点的斜率为)的直线与曲线交于不同的两点,,点轴上,且,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B,
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知与抛物线交于A、B两点,
(1)若|AB|="10," 求实数的值。
(2)若, 求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的离心率为,点,原点到直线的距离为
(1)求椭圆的方程;
(2)设点,点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MOO为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

查看答案和解析>>

同步练习册答案