椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为。
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若是椭圆:且为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线和的斜率都存在,并分别记为,,那么与之积是与点位置无关的定值.
试对双曲线且为常数写出类似的性质,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点、, 是一个动点, 且直线、的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线交于、两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为.
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线的准线与轴交于,焦点为,若椭圆以、为焦点、且离心率为.
(1)当时,求椭圆的方程;
(2)若抛物线与直线及轴所围成的图形的面积为,求抛物线和直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴长是短轴长的两倍,焦距为.
(1)求椭圆的标准方程;
(2)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com