抛物线
的准线与
轴交于
,焦点为
,若椭圆
以
、
为焦点、且离心率为
.
(1)当
时,求椭圆
的方程;
(2)若抛物线
与直线![]()
及
轴所围成的图形的面积为
,求抛物线
和直线
的方程.
科目:高中数学 来源: 题型:解答题
已知抛物线
及点
,直线
斜率为1且不过点
,与抛物线交于点A,B,
(1) 求直线
在
轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,两焦点分别为
,点
是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点
在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线
的顶点为坐标原点
,焦点
在
轴上,准线
与圆
相切.![]()
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
和抛物线
交于点
,命题P:“若直线
过定点
,则
”,请判断命题P的真假,并证明。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y
=2x于M(x
,y
),N(x
,y
)两点. ⑴写出直线L的方程;⑵求x
x
与y
y
的值;⑶求证:OM⊥ON![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A(
,
),B(
,
)是函数
的图象上的任意两点(可以重合),点M在直线
上,且
.
(1)求
+
的值及
+
的值
(2)已知
,当
时,![]()
+
+
+
,求
;
(3)在(2)的条件下,设
=
,
为数列{
}的前
项和,若存在正整数
、
,
使得不等式
成立,求
和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,线段
的两个端点
、
分别分别在
轴、
轴上滑动,
,点
是
上一点,且
,点
随线段
的运动而变化.![]()
(1)求点
的轨迹方程;
(2)设
为点
的轨迹的左焦点,
为右焦点,过
的直线交
的轨迹于
两点,求
的最大值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
双曲线
与椭圆
有相同的焦点
,且该双曲线
的渐近线方程为
.
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点
作斜率不为零的直线与此双曲线的左,右两支分别交于点
、
,
设
,当
轴上的点
满足
时,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com