精英家教网 > 高中数学 > 题目详情

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

(1)
(2) 抛物线方程为,直线方程为

解析试题分析:解:(1)当时,抛物线的准线为
,                           2分
设椭圆,则,离心率   4分         故此时椭圆的方程为 6分
(2)由得:,解得   8分
故所围成的图形的面积
   10分
解得:,又
所以:抛物线方程为,直线方程为   12分
考点:圆锥曲线方程和性质的运用
点评:解决的关键是熟悉圆锥曲线方程和性质,以及利用定积分表示曲边梯形面积的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线及点,直线斜率为1且不过点,与抛物线交于点A,B,
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MOO为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

查看答案和解析>>

同步练习册答案