精英家教网 > 高中数学 > 题目详情

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

⑴直线L方程为y=k(x-2)
⑵xx=4,yy=-4
(3)根据已知中直线的方程意义抛物线的方程联立方程组,结合斜率公式来表示求证。

解析试题分析:解:
(Ⅰ)解:直线l过点P(2,0)且斜率为k,故可直接写出直线l的方程为y=k(x-2) (k≠0)①
(Ⅱ)解:由①及y2=2x消去y代入可得k2x2-2(k2+1)x+4k2=0.②则可以分析得:点M,N的横坐标x1与x2是②的两个根,由韦达定理得x1x2由韦达定理得x1x2= =4.又由y12=2x1,y22=2x2得到(y1y22=4x1x2=4×4=16,又注意到y1y2<0,所以y1y2=-4.(Ⅲ)证明:设OM,ON的斜率分别为k1,k2,则k=,k=.相乘得k k==-1OM⊥ON所以证得:OM⊥ON.
考点:直线与抛物线的位置关系
点评:主要是考查了抛物线的方程以及性质和直线与抛物线的位置关系,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于轴(垂足为T),与抛物线交于不同的两点P、Q,且.
(Ⅰ)求点T的横坐标
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线的准线与轴交于,焦点为,若椭圆为焦点、且离心率为.                   
(1)当时,求椭圆的方程;
(2)若抛物线与直线轴所围成的图形的面积为,求抛物线和直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为 (为参数) 上的动点,点满足点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

查看答案和解析>>

同步练习册答案