已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标
;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
科目:高中数学 来源: 题型:解答题
动圆M过定点A(-
,0),且与定圆A´:(x-
)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相切
,直线
与
轴交于点
,当
为何值时
的面积有最小值?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,椭圆
左右焦点分别为
,上顶点为
,
为等边三角形.定义椭圆C上的点
的“伴随点”为
.
(1)求椭圆C的方程;
(2)求
的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知离心率为
的椭圆
上的点到左焦点
的最长距离为
.![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的左焦点
任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”,求椭圆的“左特征点”
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
及点
,直线
斜率为1且不过点
,与抛物线交于点A,B,
(1) 求直线
在
轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为
和
,且|![]()
|=2,
点(1,
)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过
的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切是圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定直线
动圆M与定圆
外切且与直线
相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若
求证直线AB过一定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y
=2x于M(x
,y
),N(x
,y
)两点. ⑴写出直线L的方程;⑵求x
x
与y
y
的值;⑶求证:OM⊥ON![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com