已知椭圆
过点
,椭圆
左右焦点分别为
,上顶点为
,
为等边三角形.定义椭圆C上的点
的“伴随点”为
.
(1)求椭圆C的方程;
(2)求
的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.
(1)
(2)
(3)
的面积是定值![]()
解析试题分析:解:(1)由已知
,解得
,方程为
.4分
(2)当
时,显然
,由椭圆对称性,只研究
即可,
设
(
),于是
5分
(当且仅当
时取等号) 8分
(3) 设
,则
;
1)当直线
的斜率存在时,设方程为
,
由
得:
;
有
① 10分
由以
为直径的圆经过坐标原点O可得:
;
整理得:
②
将①式代入②式得:
, 12分
又点
到直线
的距离![]()
=
=
=![]()
所以
14分
2) 当直线
的斜率不存在时,设方程为![]()
联立椭圆方程得:
;
代入
得
;
,
综上:
的面积是定值
又
的面积也为
,所以二者相等. 16分
考点:椭圆的方程与性质
点评:主要是考查了直线与椭圆的位置关系的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
已知中心在原点的椭圆C:
的一个焦点为
,
为椭圆C上一点,
的面积为
.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线
,使得直线
与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点
到点
的距离与到直线
的距离之比为定值
,记
的轨迹为
.![]()
(1)求
的方程,并画出
的简图;
(2)点
是圆
上第一象限内的任意一点,过
作圆的切线交轨迹
于
,
两点.
(i)证明:
;
(ii)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点焦点在
轴上的椭圆C,其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标
;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左焦点F为圆
的圆心,且椭圆上的点到点F的距离最小值为
。
(I)求椭圆方程;
(II)已知经过点F的动直线
与椭圆交于不同的两点A、B,点M(
),证明:
为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线
的参数方程为
,曲线
的极坐标方程为
.
(Ⅰ)将曲线
的参数方程化为普通方程;
(Ⅱ)判断曲线
与曲线
的交点个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com