精英家教网 > 高中数学 > 题目详情

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(1)(2)曲线与曲线只有一个交点.

解析试题分析:(Ⅰ)由已知得  1分
消去参数,得 .            3分
(Ⅱ)由得曲线的直角坐标方程为, 4分
消去,得,      5分
解得           6分
故曲线与曲线只有一个交点.                  7分
考点:参数方程与坐标系
点评:主要是考查了抛物线的参数方程以及直线的极坐标方程的运用,联立方程组求解交点的思想,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定直线动圆M与定圆外切且与直线相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,两焦点分别为,点是椭圆C上一点,的周长为16,设线段MOO为坐标原点)与圆交于点N,且线段MN长度的最小值为.
(1)求椭圆C以及圆O的方程;
(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线L交抛物线y=2x于M(x,y),N(x,y)两点. ⑴写出直线L的方程;⑵求xx与yy的值;⑶求证:OM⊥ON

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(,),B(,)是函数的图象上的任意两点(可以重合),点M在直线上,且.
(1)求+的值及+的值
(2)已知,当时,+++,求
(3)在(2)的条件下,设=为数列{}的前项和,若存在正整数
使得不等式成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.

(1)若,求点A的坐标;
(2)若直线的倾斜角为,求线段AB的长.

查看答案和解析>>

同步练习册答案