精英家教网 > 高中数学 > 题目详情

坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.

(1) (2)

解析试题分析:(Ⅰ)由              
(Ⅱ)将的参数方程代入圆C的直角坐标方程,得
由于,故可设是上述方程的两实根,
所以故由上式及t的几何意义得:
|PA|+|PB|==。      
考点:简单曲线的极坐标方程;直线和圆的方程的应用;直线的参数方程.
点评:此题考查学生会将极坐标方程和参数方程分别化为直角坐标方程和普通方程,掌握直线参数方程中参数的几何意义,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,过抛物线>0)的顶点作两条互相垂直的弦OA、OB。

⑴设OA的斜率为k,试用k表示点A、B的坐标;
⑵求弦AB中点M的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点,且与轴交于点为坐标原点,定点的坐标为.

(1)若动点满足,求点的轨迹
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆具有性质:若是椭圆为常数上关于原点对称的两点,点是椭圆上的任意一点,若直线的斜率都存在,并分别记为,那么之积是与点位置无关的定值
试对双曲线为常数写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在椭圆上找一点,使这一点到直线的距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆交于两点,如果的周长等于8。
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及定值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为 (为参数) 上的动点,点满足点的轨迹为曲线.
(1)求的方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别为椭圆的左、右两个焦点.
(Ⅰ) 若椭圆C上的点两点的距离之和等于4, 写出椭圆C的方程和离心率.;
(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为时, 求证: ·为定值.

查看答案和解析>>

同步练习册答案