精英家教网 > 高中数学 > 题目详情

在椭圆上找一点,使这一点到直线的距离的最小值

解析试题分析:解:设椭圆的参数方程为,    2分
      4分
    8分
时,,此时所求点为         10分
考点:椭圆的参数方程
点评:关键是利用椭圆的参数方程来设出点,借助于点到直线的距离公式得到最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设圆C与两圆中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线的参数方程是:(为参数).
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)设直线与曲线交于两点,点的直角坐标为,若,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,离心率,直线经过左焦点.
(1)求椭圆的方程;
(2)若为椭圆上的点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且它的离心率.直线
与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:两点的横坐标的平方和为定值;
(Ⅲ)若直线与圆相切,椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,,过点F的直线与双曲线右支交于点
(Ⅰ)求此双曲线的方程;
(Ⅱ)求面积的最小值.

查看答案和解析>>

同步练习册答案