已知两定点E(-2,0),F(2,0),动点P满足
,由点P向x轴作垂线段PQ,垂足为Q,点M满足
,点M的轨迹为C.
(1)求曲线C的方程
(2)过点D(0,-2)作直线
与曲线C交于A、B两点,点N满足![]()
(O为原点),求四边形OANB面积的最大值,并求此时的直线
的方程.
(1)
(2) 直线
的方程为![]()
解析试题分析:解(1)
动点P满足
,
点P的轨迹是以E F为直径的圆,
动点P的轨迹方程为
.设M(x,y)是曲线C上任一点,因为PM
x轴,
,
点P的坐标为(x,2y),
点P在圆
上,
,
曲线C的方程是
.
(2)因为
,所以四边形OANB为平行四边形,
当直线
的斜率不存在时显然不符合题意;
当直线
的斜率存在时,设直线
的方程为y=kx-2,
与椭圆交于
两点,由
得![]()
,由
,得
,即![]()
![]()
![]()
10分
令![]()
![]()
,
,解得
,
满足
,
,(当且仅当
时“=”成立)
,
当
平行四边形OANB面积的最大值为2.
所求直线
的方程为![]()
考点:圆锥曲线方程的求解和运用
点评:主要是考查了运用代数的方法来通过向量的数量积的公式,以及联立方程组,结合韦达定理来求解,属于中档题。
科目:高中数学 来源: 题型:解答题
椭圆
与
轴负半轴交于点
,
为椭圆第一象限上的点,直线
交椭圆于另一点
,椭圆左焦点为
,连接
交
于点D。
(1)如果
,求椭圆的离心率;
(2)在(1)的条件下,若直线
的倾斜角为
且△ABC的面积为
,求椭圆的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线
与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系
和极坐标系
的原点与极点重合,
轴的正半轴与极轴重合,单位长度相同。已知曲线
的极坐标方程为
,曲线
的参数方程为![]()
,射线
,
,
与曲线
交于极点
以外的三点A,B,C.
(1)求证:
;
(2)当
时,B,C两点在曲线
上,求
与
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点
,
,过
且与坐标轴不平行的直线
与椭圆交于
两点,如果
的周长等于8。
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值?若存在,求出点
的坐标及定值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F
、F
,A是椭圆C上的一点,AF
⊥F
F
,O是坐标原点,OB垂直AF
于B,且OF
=3OB.![]()
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求t∈(0,b),使得命题“设圆x
+y
=t
上任意点M(x
,y
)处的切线交椭圆C于Q
、Q
两点,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
,点
、
分别为双曲线
的左、右焦点,动点
在
轴上方.
(1)若点
的坐标为
是双曲线的一条渐近线上的点,求以
、
为焦点且经过点
的椭圆的方程;
(2)若∠
,求△
的外接圆的方程;
(3)若在给定直线
上任取一点
,从点
向(2)中圆引一条切线,切点为
. 问是否存在一个定点
,恒有
?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com